The Beurling operator for the hyperbolic plane
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولthe search for the self in becketts theatre: waiting for godot and endgame
this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...
15 صفحه اولTessellating the Hyperbolic Plane
The main goal of this paper will be to determine which hyperbolic polygons can be used to tessellate the hyperbolic plane. Sections 1-4 will be devoted to providing the context of the hyperbolic plane and developing the basic tools needed to prove the key theorems of this paper. In these sections I will cover two common models of the plane and the isometries of these spaces. Section 4 will be a...
متن کاملMass in the Hyperbolic Plane∗
Archimedes computed the center of mass of several regions and bodies [Dijksterhuis], and this fundamental physical notion may very well be due to him. He based his investigations of this concept on the notion of moment as it is used in his Law of the Lever. A hyperbolic version of this law was formulated in the nineteenth century leading to the notion of a hyperbolic center of mass of two point...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae Mathematica
سال: 2012
ISSN: 1239-629X,1798-2383
DOI: 10.5186/aasfm.2012.3708